

ADVANCED SUBSIDIARY GCE UNIT MATHEMATICS

4725/01

Further Pure Mathematics 1

Afternoon

Time: 1 hour 30 minutes

MONDAY 11 JUNE 2007

Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

This document consists of 4 printed pages.

© OCR 2007 [T/102/2698]

OCR is an exempt Charity

[Turn over

- 1 The complex number a + ib is denoted by z. Given that |z| = 4 and $arg z = \frac{1}{3}\pi$, find a and b. [4]
- 2 Prove by induction that, for $n \ge 1$, $\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$. [5]
- 3 Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$ to show that, for all positive integers n,

$$\sum_{r=1}^{n} (3r^2 - 3r + 1) = n^3.$$
 [6]

- 4 The matrix **A** is given by $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 3 & 5 \end{pmatrix}$.
 - (i) Find A^{-1} . [2]

The matrix \mathbf{B}^{-1} is given by $\mathbf{B}^{-1} = \begin{pmatrix} 1 & 1 \\ 4 & -1 \end{pmatrix}$.

(ii) Find
$$(AB)^{-1}$$
. [4]

5 (i) Show that

$$\frac{1}{r} - \frac{1}{r+1} = \frac{1}{r(r+1)}.$$
 [1]

(ii) Hence find an expression, in terms of n, for

$$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots + \frac{1}{n(n+1)}.$$
 [3]

(iii) Hence find the value of
$$\sum_{r=n+1}^{\infty} \frac{1}{r(r+1)}$$
. [3]

6 The cubic equation $3x^3 - 9x^2 + 6x + 2 = 0$ has roots α , β and γ .

(i) (a) Write down the values of
$$\alpha + \beta + \gamma$$
 and $\alpha\beta + \beta\gamma + \gamma\alpha$. [2]

(b) Find the value of
$$\alpha^2 + \beta^2 + \gamma^2$$
. [2]

- (ii) (a) Use the substitution $x = \frac{1}{u}$ to find a cubic equation in u with integer coefficients. [2]
 - **(b)** Use your answer to part (ii) (a) to find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$. [2]

- 7 The matrix **M** is given by $\mathbf{M} = \begin{pmatrix} a & 4 & 0 \\ 0 & a & 4 \\ 2 & 3 & 1 \end{pmatrix}$.
 - (i) Find, in terms of a, the determinant of M. [3]
 - (ii) In the case when a = 2, state whether M is singular or non-singular, justifying your answer. [2]
 - (iii) In the case when a = 4, determine whether the simultaneous equations

$$ax + 4y = 6,$$

$$ay + 4z = 8,$$

$$2x + 3y + z = 1,$$

have any solutions.

[3]

- 8 The loci C_1 and C_2 are given by |z-3|=3 and $\arg(z-1)=\frac{1}{4}\pi$ respectively.
 - (i) Sketch, on a single Argand diagram, the loci C_1 and C_2 . [6]
 - (ii) Indicate, by shading, the region of the Argand diagram for which

$$|z-3| \le 3$$
 and $0 \le \arg(z-1) \le \frac{1}{4}\pi$. [2]

- 9 (i) Write down the matrix, A, that represents an enlargement, centre (0, 0), with scale factor $\sqrt{2}$.
 - (ii) The matrix **B** is given by $\mathbf{B} = \begin{pmatrix} \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \\ -\frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{pmatrix}$. Describe fully the geometrical transformation represented by **B**.
 - (iii) Given that C = AB, show that $C = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$. [1]
 - (iv) Draw a diagram showing the unit square and its image under the transformation represented by C.
 - (v) Write down the determinant of C and explain briefly how this value relates to the transformation represented by C. [2]
- 10 (i) Use an algebraic method to find the square roots of the complex number 16 + 30i. [6]
 - (ii) Use your answers to part (i) to solve the equation $z^2 2z (15 + 30i) = 0$, giving your answers in the form x + iy.

© OCR 2007

1	EITHER $a = 2$ $b = 2\sqrt{3},$ OR $a = 2 b = 2\sqrt{3}$	M1 A1 M1 A1 M1 M1 A1 A1	4	Use trig to find an expression for a (or b) Obtain correct answer Attempt to find other value Obtain correct answer a.e.f. (Allow 3.46) State 2 equations for a and b Attempt to solve these equations Obtain correct answers a.e.f. SR \pm scores A1 only
2	$(1^{3} =)\frac{1}{4} \times 1^{2} \times 2^{2}$ $\frac{1}{4}n^{2}(n+1)^{2} + (n+1)^{3}$ $\frac{1}{4}(n+1)^{2}(n+2)^{2}$	B1 M1 M1(indep) A1 A1	5	Show result true for <i>n</i> = 1 Add next term to given sum formula Attempt to factorise and simplify Correct expression obtained convincingly Specific statement of induction conclusion
			5	
3	$3\Sigma r^{2} - 3\Sigma r + \Sigma 1$ $3\Sigma r^{2} = \frac{1}{2}n(n+1)(2n+1)$ $3\Sigma r = \frac{3}{2}n(n+1)$ $\Sigma 1 = n$	M1 A1 A1 A1 M1		Consider the sum of three separate terms Correct formula stated Correct formula stated Correct term seen Attempt to simplify
	$\sum_{n^3} 1 = n$	A1	6	Obtain given answer correctly
			6	
4	(i) $\frac{1}{2}$ $\begin{pmatrix} 5 & -1 \\ -3 & 1 \end{pmatrix}$	B1 B1	2	Transpose leading diagonal and negate other diagonal or solve sim. eqns. to get 1 st column Divide by the determinant or solve 2 nd pair to get 2 nd column
	(ii) $\frac{1}{2} \begin{pmatrix} 2 & 0 \\ 23 & -5 \end{pmatrix}$	M1 M1(indep) A1ft A1ft	4 6	Attempt to use B ⁻¹ A ⁻¹ or find B Attempt at matrix multiplication One element correct, a.e.f, All elements correct, a.e.f. NB ft consistent with their (i)

5	. 1			
	(i) $\frac{1}{r(r+1)}$	B1	1	Show correct process to obtain given result
	(iii) $1 - \frac{1}{n+1}$ (iii) $S_{\infty} = 1$ $\frac{1}{n+1}$	M1 M1 A1 B1ft M1 A1 c.a.o.	3	Express terms as differences using (i) Show that terms cancel Obtain correct answer, must be <i>n</i> not any other letter State correct value of sum to infinity Ft their (ii) Use sum to infinity – their (ii)
			3 7	Obtain correct answer a.e.f.
6	(i) (a) $\alpha + \beta + \gamma = 3, \alpha\beta + \beta\gamma + \gamma\alpha = 2$ (b)	B1 B1	2	State correct values
	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ $= 9 - 4 = 5$ (ii) (a) $\frac{3}{u^{3}} - \frac{9}{u^{2}} + \frac{6}{u} + 2 = 0$ $2u^{3} + 6u^{2} - 9u + 3 = 0$ (b) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -3$	M1 A1 ft M1 A1 A1 A1 A1 A1	2 2	State or imply the result and use their values Obtain correct answer Use given substitution to obtain an equation Obtain correct answer
		71111	8	Required expression is related to new cubic stated or implied -(their "b" / their "a")

7		3.61	1	CI :
1	(i)	M1		Show correct expansion process
		M1		Show evaluation of a 2 x 2
	a(a - 12) + 32	A1	3	determinant
	(ii)			Obtain correct answer a.e.f.
	$\det \mathbf{M} = 12$	M1	2	
	non-singular	A1ft		Substitute $a = 2$ in their determinant
	(iii) EITHER	B1		
		M1		Obtain correct answer and state a
	OR			consistent conclusion
		A1	3	
		M1		$\det M = 0$ so non-unique solutions
		A1		
		A1		Attempt to solve and obtain 2
				inconsistent equations
				Deduce that there are no solutions
				Deduce that there are no solutions
				Substitute $a = 4$ and attempt to solve
				Obtain 2 correct inconsistent
				equations
			8	Deduce no solutions
0	(i) Circle control (2, 0)	D1D1	ð	
8	(i) Circle, centre (3, 0),	B1B1		Sketch showing correct features
	y-axis a tangent at origin	B1		N.B. treat 2 diagrams asa MR
	Straight line,	B1		
	through $(1, 0)$ with +ve slope	B1		
	In 1 st quadrant only	B1		
	(ii) Inside circle, below line,	B2ft	6	Sketch showing correct region
	above <i>x</i> -axis		2	SR: B1ft for any 2 correct features
			8	

(i) $\begin{pmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}$ (ii) Rotation (centre O)	B1	1	Correct matrix
(ii) Rotation (centre O			
(iii)	45°, clockwise B1B1B1	3	Sensible alternatives OK, must be a single transformation
	B1	1	Matrix multiplication or combination of transformations
(iv) $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} M1 \\ A1 \end{bmatrix}$	2	For at least two correct images For correct diagram
$(v) \det \mathbf{C} = 2$	B1		State correct value
area of square has b	een doubled B1	2	State correct relation a.e.f.
		9	
10 (i) $x^2 - y^2 = 16$ and xy	M1 = 15		Attempt to equate real and imaginary parts of $(x + iy)^2$ and $16+30i$
	A1A1		Obtain each result
	M1		Eliminate to obtain a quadratic in x^2 or y^2
±(5 + 3i)	M1		Solve to obtain $x = (\pm) 5$ or $y = (\pm) 3$
(ii) $z = 1 + \sqrt{16 + 20}$	A1	6	Obtain correct answers as complex numbers
$z = 1 \pm \sqrt{16 + 30i}$	M1*		Use quadratic formula or complete the square
6 + 3i, -4 - 3i	A1		a
	*M1dep	5	Simplify to this stage
	A1 A1ft		Use answers from (i) Obtain correct answers
		11	Obtain correct answers